
OAuth 2.0 and
OpenID Connect

Fabian Hauck

fabianhauck.de

Overview

1. Introduction to OAuth 2.0 and OpenID Connect

2. Attacks on OAuth

3. Attack Mitigation

4. Outlook

2

fabianhauck.de

OAuth 2.0 vs. OpenID Connect

OAuth 2.0: “The OAuth 2.0 authorization framework enables a third-
party application to obtain limited access to an HTTP service [...]”
- RFC 6749

- Example use case: Authorize a printer to access a cloud storage
with photos.

OpenID Connect: Is an identity layer on top of OAuth 2.0 that
enables clients to verify the identity of a user. - OpenID Foundation

- Example use cases: Single Sign-On, Login to an application

3

https://tools.ietf.org/html/rfc6749
https://openid.net/connect/
https://www.flaticon.com/authors/freepik
http://www.flaticon.com

OAuth 2.0 Flows

- Authorization Code Grant
- Implicit Grant

4

fabianhauck.de

Authorization Code Grant

Client

Authorization
Server

Authorization Request
(response_type, state, redirect_uri)

Authorization Request

User Authentication

User Authentication

Authorization Response (code, state)

Authorization Response

Access Token Request (code, redirect_uri)

Access Token Response (access_token, [refresh_token])

code

5

Resource
Owner

User-Agent

fabianhauck.de

Implicit Grant
Resource

Owner

User-Agent

Client

Authorization
Server

Web-Hosted
Client Resource

Authorization Request

Authorization Request
(response_type, state, redirect_uri)

User Authentication

User Authentication

Access Token Response (access_token, state)

Access Token Response (access_token, state)

Access Token

Script

token

6

fabianhauck.de

Public vs. Confidential Clients

Confidential Clients:

- Can keep a client secret to authenticate to the authorization server

- Example: client implemented on a secure server

Public Clients:

- Can not keep a client secret

- Example: native apps, web browser-based applications

Further information about client types can be found in RFC 6749.

7

https://tools.ietf.org/html/rfc6749#section-2.1

Attacks

- Insufficient Redirect URI Validation
- Misuse of Stolen Codes

8

fabianhauck.de

Insufficient Redirect URI Validation

Attack on redirect URI wildcards:

- Redirect URI pattern: https://*.somesite.example/*

- Attackers redirect URI: https://attacker.example/.somesite.example

⇒ This could be a correct redirect URI depending on how the AS matches the wildcard.
Further information can be found in the OAuth 2.0 Security BCP. 9

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16#section-4.1

fabianhauck.de

Misuse of Stolen Codes

Further information can be found in this blog post by Daniel Fett and in the OAuth 2.0 Security BCP. 10

https://danielfett.de/2020/05/16/pkce-vs-nonce-equivalent-or-not/#misuse-of-stolen-codes
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16#section-4.5

Security Mechanisms

- PKCE
- Nonce

11

fabianhauck.de

Proof Key for Code Exchange (PKCE)

Further information can be found in the RFC 7636. 12

Security mechanism to protect the Authorization Code Grant against the authorization code
interception attack.

https://tools.ietf.org/html/rfc7636

fabianhauck.de

Nonce (OpenID Connect)

Further information can be found in the OpenID Connect Core specification.
For more information about PKCE vs. Nonce check out this blog post.

13

Security mechanism to protect OIDC against replay attacks.

https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://danielfett.de/2020/05/16/pkce-vs-nonce-equivalent-or-not/

Outlook

14

fabianhauck.de

App2App Authorization Flows

The next big thing in OAuth are App-to-App flows on mobile devices because they improve
the user experience.

15

Mobile OS

Client

App

Web

Browser
Authorization Server

Client

App
AS App

Mobile
OS

Further information can be found in the Improving OAuth App-to-App Security blog post.

Right now Future

Web

Browser

OR

https://danielfett.de/2020/11/27/improving-app2app/

fabianhauck.de

OAuth 2.1

- The Authorization Code Grant has to use PKCE.

- Redirect URIs have to be compared by exact string matching.

- The Implicit flow and the Resource Owner Password Credentials flow were removed
from the specification.

- Refresh tokens must either be bound to the client or refresh token rotation must be
used.

Further information can be found in the OAuth 2.1 draft.

16

https://tools.ietf.org/html/draft-parecki-oauth-v2-1-03

Live Demo
Demonstration of the authorization code interception attack

on Android. The source code can be found on GitHub.

17

https://github.com/fabian-hk/AppAuth-Attack

fabianhauck.de

Guidelines for Penetration Testing

- Check if the appropriated flow is used (most times probably Authorization Code flow)

- Check for insufficient redirect URI verification

- Check whether PKCE and Nonce (OIDC) is used and verified correctly

- If no PKCE is used verify that the ‘state’ parameter is used and validated for CSRF
protection → further information can be found in the OAuth 2.0 Security BCP

- Make sure that the authorization code cannot be reused

- Verify that all secrets (client_secret, state, nonce, pkce_verifier) have a sufficient high
entropy and are not leaked through any channel

- On mobile: Check the security of the redirections (look at Improving OAuth App-to-
App Security blog post)

18

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16#section-2.1
https://danielfett.de/2020/11/27/improving-app2app/

fabianhauck.de

Additional Resources

Penetration Tester’s Guide to Evaluating OAuth 2.0 - Authorization Code Grant:

● https://maxfieldchen.com/posts/2020-05-17-penetration-testers-guide-oauth-2.html

OAuth to Account takeover:

● https://book.hacktricks.xyz/pentesting-web/oauth-to-account-takeover

19

https://maxfieldchen.com/posts/2020-05-17-penetration-testers-guide-oauth-2.html
https://book.hacktricks.xyz/pentesting-web/oauth-to-account-takeover

